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The Benney equation including thermocapillary effects is considered to study a liquid
film flowing down a homogeneously heated inclined wall. The link between the finite-
time blow-up of the Benney equation and the absence of the one-hump travelling-wave
solution of the associated dynamical system is accurately demonstrated in the whole
range of linearly unstable wavenumbers. Then the blow-up boundary is tracked in the
whole space of parameters accounting for flow rate, surface tension, inclination and
thermocapillarity. In particular, the latter two effects can strongly reduce the validity
range of the Benney equation. It is also shown that the subcritical bifurcation found
for falling films with the Benney equation is related to the blow-up of solutions and is
unphysical in all cases, even with the thermocapillary effect though in contrast to hori-
zontally heated films. The accuracy of bounded solutions of the Benney equation is
determined by comparison with a reference weighted integral boundary layer model.
A distinction is made between closed and open flow conditions, when calculating
travelling-wave solutions; the former corresponds to the conservation of mass and the
latter to the conservation of flow rate. The open flow condition matches experimental
conditions more closely and is explored for the first time through the associated
dynamical system. It yields bounded solutions for larger Reynolds numbers than the
closed flow condition. Finally, solutions that are conditionally bounded are found
to be unstable to disturbances of larger periodicity. In this case, coalescence is the
pathway yielding finite-time blow-up.

1. Introduction
Thin liquid film flows are widely present in various branches of industry. The length

scale of the film flows may vary from some millimetres in cooling processes of elec-
tronic components to about 10 m in thin film evaporators in the food and chemical
industries. The liquid film is usually provided by a sprayer, being sub-cooled down to
the saturation temperature for evaporation. In such a process, instabilities of free film
surfaces play a crucial role by inducing wavy regimes that are well known to enhance
mass or heat transfer and may lead to film rupture (Colinet, Legros & Velarde 2001).
From a fundamental point of view, thin film flows are a reference topic for the study
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of long-wave instabilities. The critical wavenumber at onset is zero implying that
the waves are always long compared to the film thickness. The cross-stream and
streamwise scales are thus separated, similar to the separation of scales sustaining the
boundary layer theory. The approximations that lead to the Prandtl (boundary layer)
equations apply for film flows where the pressure is simply governed by gravity and
surface tension (Chang 1994; Chang & Demekhin 2002).

1.1. The film parameter

In this context, it is a widespread practice to define a small parameter as the ratio
of the film thickness and the typical length scale of disturbances of the flow. It is
called film parameter and denoted by ε (Chang 1994). Unlike usual situations and
especially to the boundary layer theory, the value of ε cannot be assigned a priori for
film flows but is rather given a posteriori by the nonlinear solution itself. Indeed, the
separation of scales is enabled by the smallness of the local steepness of the waves. It
corresponds to the following small space and time modulations:

∂x, ∂t ∼ ε � 1. (1.1)

At the linear stage, the film parameter can be associated with the neutral wave-
number kc such that the maximum steepness of the waves is governed by the balance
between the pressure drop due to surface tension and the pressure disturbance at
the interface. For a vertical plane, it leads to the linear estimate εL ∼ kc ∝ (Re/We)1/2,
hence the common assumption We ε2 ∼ O(1) (Gjevik 1970) when Re = O(1); Re is the
Reynolds number and We is the usual Weber number which compares the surface
tension to the viscous stress at the interface as defined in (2.5) below.

In the nonlinear regime, and at low Reynolds number where the flow is dominated
by viscosity and surface tension, the maximum steepness of the wave is governed by a
balance of the streamwise pressure gradient produced by surface tension and gravity
along the plane. This leads to the nonlinear estimate εN ∼ We−1/3.

In any case, at low Reynolds number, viscosity ensures the in-depth coherence of
the flow which allows the full set of equations to be reduced to a single evolution
equation for the film thickness, as initially performed by Benney (1966). The equation
is usually truncated at first or second order in ε and still referred to as the Benney
equation (see the review by Oron, Davis & Bankoff 1997).

Now, the incompatibility between the two estimates εL and εN can be understood
within the framework of the Benney expansion by considering the assumption (1.1),
where the genuine small parameter is εRe instead of ε only. Thereby, the slaving of
the velocity field to the film thickness evolution is ensured by the smallness of the
product εRe. In the linear stage εLRe ∼ (ReWe−1/3)3/2, while in the nonlinear regime
εNRe ∼ ReWe−1/3. Both estimates are then of the same order of magnitude and lead
to the definition of a reduced Reynolds number R ∝ ReWe−1/3 as introduced by
Shkadov (1977) and used later in this paper.

1.2. Finite-time blow-up

The Benney equation asymptotically predicts the linear stability threshold for the
long-wave hydrodynamic instability in agreement with the Orr–Sommerfeld equation,
which corresponds to the exact linear stability problem of the Navier–Stokes equations
(Yih 1963). It also allows for bounded nonlinear travelling-wave solutions, i.e. waves
that remain stationary in their moving frame, extending to solitary waves. Pumir,
Manneville & Pomeau (1983) have described such solitary waves as homoclinic trajec-
tories of the associated dynamical system. They showed that there is a critical value
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Re∗
1 above which these waves no longer exist. Pumir et al. (1983) completed their study

by numerical simulations of the initial-value problem. They observed in simulations
a catastrophic behaviour taking place for too large a Reynolds number (Re >Re∗) or
too large an amplitude, showing a finite-time singularity (blow-up). They finally wrote
that: “Re∗ (above which catastrophic events occur) is obviously related to the critical
value Re∗

1 above which no one-hump solitary waves exist; however, we have not
tried to check this numerically”. Thanks to the recent numerical results by Oron &
Gottlieb (2002), we will be able in this paper to do such a check for solitary waves as
well as for any type of one-hump travelling wave (see § 3).

The occurrence of finite-time blow-up observed with the Benney equation was never
confirmed experimentally (Alekseenko, Nakoryakov & Pokusaev 1985; Liu & Gollub
1994). If the catastrophic behaviour encountered with the Benney equation were
related to dry patch formation, it should be promoted by the thinness of the film –
the thinner the film, the easier the formation of a dry patch – whereas the catastrophic
behaviour is observed for thicker films (Re > Re∗). Again if this catastrophic behaviour
were physical, it should also be observed with more elaborate models from which the
Benney equation is derived (e.g. the boundary layer equations). Yet it has never been
observed (Chang 1994).

Formally, the Benney equation is a particular case of the following evolution
equation for the film thickness h(x, t):

∂th + ∂x(h
3 + Φhm∂xh + h3∂xxxh) = 0, (1.2)

where m is a positive integer and Φ a positive parameter. For m =6, the Benney
equation corresponding to a vertical and isothermal film (see § 4.1) is recovered.
Hocherman & Rosenau (1993) have conjectured that (1.2) leads to finite-time blow-up
when m > 3. Bertozzi & Pugh (1998) refined this criterion, proving that nonlinearities
with exponents m < 5 can yield bounded solutions under certain conditions. Rosenau,
Oron & Hyman (1992) have integrated equation (1.2) for m =6 in time using a sinu-
soidal modulation of the film thickness as initial condition. They identified Φ∗ ≈ 0.5
as the limiting value separating uniformly bounded solutions and finite-time blow-up.
This value appeared to be independent of the initial frequency of the disturbance.

All these previous works agree in identifying the strong nonlinearity ∂x(h
6∂xh),

of inertial origin, as the cause of the singularities found with the Benney equation.
Unfortunately, the addition of higher-order terms reduces the range of validity even
more (Salamon, Armstrong & Brown 1994), asymptotical series usually having poor
convergence properties. Hence the idea to regularize the asymptotic expansion as
suggested by Ooshida (1999) who formulated an evolution equation that does not lead
to singularities for any value of the Reynolds number. However, his equation seriously
underestimates the phase speed and the amplitude of waves at moderate Reynolds
numbers. Therefore, far from threshold, it seems not possible to describe the flow
dynamics by a unique evolution equation for the film thickness, and other variables
related to the velocity field should be introduced.

1.3. Integral boundary layer approach

Many authors since Kapitza & Kapitza (1949) and Shkadov (1967) have considered a
model based on the Kármán–Polhausen averaging method and obtained by integrating
the boundary layer equations across the film thickness. It results into two coupled
equations for the film thickness h(x, t) and the local flow rate q(x, t). This model,
referred to as the Shkadov model, allows a better description of the flow dynamics for
much larger Reynolds numbers and does not suffer any singularity. However, contrary
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to the Benney equation the model derived by Shkadov (1967) does not predict the
correct threshold of the long-wave instability. Recently, Ruyer-Quil & Manneville
(2000,,) have removed this discrepancy by combining a systematic gradient expan-
sion with weighted residual techniques using polynomials as test functions. Applying
a Galerkin method, they obtained a model involving also the two fields h and q . The
linear stability analysis of this model agrees remarkably with the Orr–Sommerfeld
results, at least up to moderate Reynolds numbers (Re ∼ 50). In the strongly nonlinear
regime, the spatial evolution of the solutions to this model in the presence of noise or
periodic forcing compares well quantitatively with both experiments (Liu & Gollub
1994) and direct numerical simulations (Ramaswamy, Chippada & Joo 1996).

Yet, the Benney equation models in the simplest way the dynamics of film flows. It
even faithfully captures all physical mechanisms at small Reynolds numbers and its
widespread use still confirms its value (Oron et al. 1997). For this reason, knowledge
of its validity in the parameter space – i.e. whether solutions exist and if yes, how
accurate they are – is crucial. This paper is mainly dedicated to this issue and the
weighted integral boundary layer model of Ruyer-Quil & Manneville will constitute
our reference model.

1.4. Benney equation with Marangoni effect

When a temperature gradient is applied across a horizontal fluid layer, the layer being
heated from below, two mechanisms related to the Marangoni (thermocapillary) effect
can lead the liquid layer from a quiescent conducting state to convective motions
(Colinet et al. 2001). Both of them originate from the interfacial stress generated at
the interface by the surface tension gradient. This gradient can have two origins, either
a modification of the temperature distribution in the bulk due to the advection by the
velocity field, or a modulation of the free surface elevation, both of them generating a
temperature gradient at the interface. The two mechanisms were classified by Goussis
& Kelly (1991) as the P-mode and the S-mode, respectively. The P-mode generally
yields convection rolls or hexagonal or square cells, the size of which is of the same
order of magnitude as the depth of the layer. This instability is referred to as the
Marangoni–Bénard instability and was theoretically demonstrated by Pearson (1958).
This instability does not require a deformable free surface. The S-mode produces
large-scale deformations, the horizontal size of which is much larger than the depth
of the layer, and may generally lead to film rupture. This instability is referred to as the
long-wave Marangoni instability and was first theoretically demonstrated by Scriven &
Sterling (1964), who neglected the gravity, which was later corrected by Smith (1966).
Since this work is exclusively devoted to the problem of long-wave deformations,
reference to the Marangoni effect will always mean to the thermocapillary long-wave
instability, or S-mode, while the P-mode will be disregarded.

As mentioned above, the long-wave thermocapillary instability leads to film rupture
for horizontal layers (Krishnamoorthy & Ramaswamy 1995). Boos & Thess (1999)
followed numerically the evolution of a film profile towards rupture using the Navier–
Stokes equation in combination with a linear temperature field, and identified a
cascade of consecutive ‘structuring events’. The qualitative agreement between their
results and those obtained from the long-wave approximation for horizontal layers
(Oron 2000) indicates that the main features of the physical system are captured
well by this approximation. Weakly nonlinear analysis done by VanHook et al.
(1997) has demonstrated the subcritical character of the pure long-wave Marangoni
instability, i.e. for a horizontal film. Thiele & Knobloch (2004) studied the transition
between a horizontal and a slightly inclined layer in the presence of the Marangoni
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effect. They showed that the bifurcation analysis for the horizontal case shares its
properties with the inclined problem only for very small values of the inclination
angle. For larger inclinations the system behaves much more like a ‘falling film’
even though their theory does not retain inertial effects and the dominant balance
in the direction normal to the wall is still hydrostatic. As a consequence, Thiele &
Knobloch (2004) found the bifurcation (from the flat film state) to be always
subcritical for very small inclinations, and always supercritical for sufficiently large
inclinations.

For inclined and vertical walls, the Marangoni effect has been incorporated into
the Benney equation by Joo et al. (1991). They examined numerically the interaction
of the two instability modes, namely hydrodynamic and thermocapillary (S-mode)
instabilities. They found that thermocapillarity enhances the hydrodynamic instability
and promotes the dramatic behaviour already encountered for isothermal films. They
associated this behaviour with the limitation of weakly nonlinear results obtained
by Gjevik (1970) and Lin (1974) where none of the solutions are stable for small
wavenumbers. However, weakly nonlinear analysis involves only a small number of
harmonics and cannot represent the highly nonlinear waves observed by Kapitza &
Kapitza (1949) or computed by Pumir et al. (1983). In the present work, the ‘dramatic
behaviour’ found by Joo et al. (1991) will instead be linked to the finite-time blow-up
of the Benney equation whose the nature will appear to be totally different to the
one leading to film rupture for horizontal layers (Krishnamoorthy & Ramaswamy
1995).

1.5. Framework and objectives of this work

The objective of this paper is to study the blow-up behaviour of the Benney equation
and its dependence on the Reynolds number, the Kapitza number, the inclination
angle and the Marangoni number. These numbers measure, respectively, the flow
rate, the surface tension, the hydrostatic pressure and the thermocapillarity. Emphasis
will be put on the dependence of the existence of the wave solutions on their
wavenumber.

To study the solution behaviour we employ bifurcation analysis using numerical
continuation techniques (Doedel et al. 1997). Continuation is an effective method to
determine branches of stationary solutions and their bifurcations by following them
through the parameter space (Doedel, Keller & Kernevez 1991a, b). For thin films,
continuation has been applied in studies of travelling and solitary waves of film flows
down inclined walls (Chang 1994; Ruyer-Quil & Manneville 2000,,; Scheid et al.
2002), sliding drops on slightly inclined planes (Thiele et al. 2001, 2002) and base
states of locally heated falling films (Skotheim, Thiele & Scheid 2002).

To compute travelling-wave solutions an additional constraint is required that speci-
fies the ‘flow condition’ in their moving frame. It is related to the choice of the con-
served quantity. The ‘closed flow’ condition corresponds to the conservation of the fluid
mass and the ‘open flow’ condition, to the conservation of the flow rate. Chang (1994)
evoked this condition when discussing constant-average thickness or constant-flux for-
mulation. Many authors (for instance Joo et al. 1991; Salamon et al. 1994; Oron &
Gottlieb 2002; Scheid et al. 2002), implicitly prescribed the closed flow condition.
This is due to the fact that in time-dependent simulations, using periodic boundary
conditions, the amount of liquid leaving the domain downstream is reinjected
upstream. However, the open flow condition is more appropriate to the experimental
situation of a flow on an inclined plate when a periodic forcing is imposed at the inlet
(Kapitza & Kapitza 1949; Liu, Paul & Gollub 1993; Liu & Gollub 1994). Indeed,
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Ruyer-Quil & Manneville (2000) found satisfactory agreement with the phase speeds
of two-dimensional travelling-wave solutions from Kapitza’s experiments using the
open flow condition, whereas the closed flow condition resulted in deviations of up
to 15%.

We limit the present study to the two-dimensional case for at least the three follow-
ing reasons: (i) we want to use the dynamical-system theory (see § 2.1.2) which cannot
be applied with a third coordinate; (ii) the linear growth rate of transverse waves
was found by Goussis & Kelly (1991) to be always larger than that of longitudinal
rolls for the long-wave modes. Note that this result extends the one obtained for
the pure hydrodynamic mode by Yih (1955) who extended Squire’s approach to
free-surface flows (Huerre & Rossi 1998); (iii) as a consequence of the previous point
and as shown experimentally, these always exists a transition zone of purely two-
dimensional flow when the film is periodically forced at the inlet (Liu, Schneider &
Gollub 1995). Moreover, the secondary three-dimensional instability develops at a
certain distance from the inlet that increases with decreasing Reynolds numbers
(Alekseenko, Nakoryakov & Pokusaev 1994). Since the Benney equation applies for
small Reynolds numbers only, we thus expect a large zone where two-dimensional
waves are dominant. Obviously, the situation will be different in the presence of
transverse perturbations of finite amplitude, especially in the case of a heated falling
film when the thermocapillary effect will promote the formation of rivulets (Joo,
Davis & Bankoff 1996; Ramaswamy, Krishnamoorthy & Joo 1997). However, this is
beyond the scope of the present work.

In § 2 the mathematical formulation including the Marangoni effect is presented
for both the Benney equation and our reference model. The closed and open flow
conditions are also detailed. In § 3 we compare travelling-wave solutions of the Benney
equation with those of the reference model. Then, we obtain the boundary beyond
which the Benney equation does not possess any stationary solution by scanning the
Reynolds number in the whole spectrum of unstable wavenumbers, i.e. from neutrally
unstable modes to infinite-wavelength solitary waves. This boundary will be called
absence-of-solution boundary and will be linked to the blow-up boundary found with
time-dependent simulations by Oron & Gottlieb (2002). In § 4 we track the absence-
of-solution boundary through the parameter space, investigating successively the
influence of surface tension, inclination and thermocapillarity. Below this boundary,
the accuracy of the solutions of the Benney equation is determined. The influence
of the Marangoni effect on the subcritical behaviour is also addressed. Finally, § 5
is devoted to the stability of the stationary solutions of the Benney equation in the
region where the blow-up occurs at a finite wavenumber. A Floquet analysis is used
to show their instability to disturbances of large period, implying the possibility of
finite-time blow-up via wave coalescence. Section 6 presents the concluding remarks.

2. Evolution equations and methodology
We consider a liquid film flowing down a heated wall of constant temperature TW,

of inclination to the horizontal β , and bounded by a passive gas of temperature T∞
(see figure 1). The liquid is Newtonian and of constant density ρ, kinematic viscosity
ν and thermal conductivity κ . The surface tension is assumed to decrease linearly
with increasing temperature, σ = σ∞ − γ (T − T∞), where σ∞ is the surface tension at
the gas temperature and γ is positive. The heat transfer coefficient from the liquid to
the gas is denoted by α. The length and time scales are defined without reference to
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Figure 1. Sketch of a thin film flowing down a heated inclined wall.

the flow characteristics as

lν =

(
ν2

g

)1/3

and tν =

(
ν

g2

)1/3

,

respectively, where g is the gravitational acceleration. We use a coordinate system
(x, y) with the origin at the wall, x directed streamwise and y normal to the wall
increasing into the liquid. The coordinates are scaled by lν . The liquid properties, the
temperature difference �T = TW − T∞ and the inclination angle determine the dimen-
sionless numbers

Ka =
σ∞lν

ρν2
, Ma =

γ�T lν

ρν2
, Bi =

αlν

κ
, S = sin β. (2.1)

The Kapitza (resp. Marangoni) number compares surface tension (resp. thermo-
capillarity) to viscosity and gravity. The Biot number describes the rate of heat
transport from the liquid to the ambient gas. The number S measures the wall incli-
nation.

2.1. The Benney equation

Because the typical wavelength λ of waves at the free surface is much larger than
the film thickness, long-wave asymptotics as proposed by Benney (1966) is used
to describe the evolution of the flow. The full system of governing equations and
boundary conditions can be reduced to a single evolution equation for the local
position of the free surface y = h(x, t):

∂th + ∂x

(
S

h3

3
+

2

15
S2h6∂xh −

√
1 − S2

h3

3
∂xh + Ka

h3

3
∂xxxh +

h2

2

BiMa ∂xh

(1 + Bi h)2

)
= 0.

(2.2)

The first term inside the parentheses accounts for the driving force due to gravity,
the second one originates from inertia and causes the hydrodynamic (surface-wave)
instability, the third and fourth represent the stabilizing effects of the hydrostatic
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pressure and the surface tension, respectively, and the last term is responsible for
the thermocapillary instability. Equation (2.2) was obtained by Joo et al. (1991).
However, here we neglect evaporation, which was included there. Though (2.2) with
Ma= 0 is usually called the Benney equation (BE), we will also use this generic name
for equation (2.2) with the Marangoni effect. Note finally, that (2.2) is ε-independent
contrary to the equation obtained by Joo et al. (1991). The reason is that we have
used the same length scale lν for both directions x and y together with the long-wave
assumption (1.1) (see also discussion of equation (2.13)).

In experiments, the control parameter that determines the Nusselt film thickness
h̄N is the specific volumetric flow rate q̄N (Kapitza & Kapitza 1949; Liu et al. 1993;
Kabov et al. 2002). We denote its dimensionless form by qN = q̄N/ν. The Reynolds
number is commonly defined as

Re = qN. (2.3)

Nusselt (1916) determined the flat film solution that has the dimensionless thickness

hN =
h̄N

lν
=

(
3Re

S

)1/3

. (2.4)

Let us also define the Weber number

We =
σ∞

ρgh̄2
N sin β

=
Ka

Sh2
N

(2.5)

that we will need in the following to compare our results with the literature.

2.1.1. Linear stability

To analyse the linear stability of the uniform flat film one imposes a small harmonic
disturbance by writing

h = hN + a exp{i(k x − c t) + Γ t}, (2.6)

where a, k, c and Γ are, respectively, the real amplitude, wavenumber, phase speed
and growth rate of the disturbance. Inserting the normal-mode representation (2.6)
into (2.2) and linearizing in a yields the linear phase speed and growth rate:

cL = Sh2
N, (2.7)

Γ = k2h3
N

(
2

15
S2h3

N − 1

3

√
1 − S2 +

1

2

BiMa

hN(1 + Bi hN)2
− 1

3
Ka k2

)
. (2.8)

The surface waves will grow for Γ > 0, i.e. for disturbance wavenumbers smaller than
the neutral (cut-off) wavenumber

kc =
1

Ka1/2

(
2

5
S2h3

N −
√

1 − S2 +
3

2

BiMa

hN(1 + BihN)2

)1/2

, (2.9)

or larger than kc = 0, which supports the long-wave approximation. This primary
instability corresponds to a Hopf bifurcation from the flat film solution. The emerging
branch of solutions will be supercritical (resp. subcritical) if it bifurcates towards
the region where k < kc (resp. k > kc). The neutral curve is the locus where the
monochromatic linear modes (waves) are of wavenumber kc.

2.1.2. Travelling-wave solutions

We seek travelling-wave solutions, i.e. stationary solutions of (2.2) in a frame of
reference moving downstream at speed c. Introducing h(x, t) = h(ξ ) with ξ = x − c t ,
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(2.2) can be integrated once to yield

−c h+S
h3

3
− Q+

2

15
S2h6h′ +Ka

h3

3
h′′′ −

√
1 − S2

h3

3
h′ +

h2

2

BiMa h′

(1 + Bih)2
= 0, (2.10)

where the prime denotes the derivative with respect to ξ . Q is the integration constant
and represents the flow rate in the moving frame of reference, as shown in the following
by (2.15). Its value is negative because the phase speed c of surface waves is generally
larger than the mean velocity of the film (three times at criticality). Assuming that no
dry spots are possible (h 
= 0), (2.10) can be divided by −Ka h3/3 to obtain

h′′′ =F [h, h′] =
1

Ka

(
3

h3
(Q+c h)−S− 2

5
S2h3h′+

√
1 − S2 h′ − 3

2

BiMa h′

h(1 + Bi h)2

)
. (2.11)

The differential equation (2.11) is recast into a dynamical system, i.e. a system of
first-order differential equations, as follows:

U ′
1 = U2,

U ′
2 = U3,

U ′
3 = F [U1, U2],


 (2.12)

where U1 =h, U2 = h′ and U3 =h′′.
To determine iteratively the periodic solutions of the dynamical system (2.12),

we use the continuation and bifurcation tools for ordinary differential equations
AUTO 97 (Doedel et al. 1997). During computations the periodicity of the solution
is enforced, the phase is fixed by U1|ξ=0 = hN and the total volume

∫ 1

0
U1 dξ = 〈h〉

ξ

is controlled as specified in § 2.3. This amounts to one integral and four boundary
conditions, hence the continuation requires three free parameters (Keller 1977). Fixing
the set of parameters {Ka, Ma, Bi, S, hN}, the free ones are {k, c, Q}. The continuation
is started from the neutral mode corresponding to the Hopf bifurcation point with kc

and cL. The starting value of Q is fixed by the Nusselt solution h(ξ ) = hN such that
from (2.10) QL = Sh3

N/3 − hN cL.
As announced in § 1, the estimate of the aspect ratio εL =hN/λ is obtained a

posteriori through the wavenumber k = 2π/λ of the stationary wave solution, and is

εL =
hNk

2π
. (2.13)

In contrast with several previous works (Joo et al. 1991, 1996; Scheid et al. 2002), the
value of the aspect ratio is not assumed a priori. However, doing so results merely in
a rescaling of λ, as for instance in Joo et al. (1991) where the wavenumber is defined
by kJDB = hNk/εJDB with fixed εJDB = 0.2. It merely results that kJDB is of O(1).

2.2. The weighted integral boundary layer model (WIBL)

Ruyer-Quil & Manneville (2000) elaborated a model that predicts accurately and
economically the linear and nonlinear properties of isothermal film flows up to
relatively high Reynolds numbers. This model was derived in the frame of the
integral boundary layer (IBL) approximation by combining a gradient expansion to
weighted residual techniques with polynomials as test functions. The corresponding
first-order weighted integral boundary layer (WIBL) model including the Marangoni
effect is derived in Appendix A and reads

∂th = −∂xq, (2.14a)
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∂tq =
5

6
Sh − 5

2

q

h2
+

9

7

q2

h2
∂xh − 17

7

q

h
∂xq − 5

6

√
1 − S2h ∂xh

+
5

6
Kah ∂xxxh +

5

4

Ma Bi ∂xh

(1 + Bih)2
, (2.14b)

where q is the local flow rate. Equation (2.14a) is the mass conservation equation.
The terms on the right-hand side of (2.14b) account, from the left to the right, for
gravity, viscous dissipation, inertia (two terms), hydrostatic effect, surface tension and
thermocapillary effect. The above model does not experience any singularity and will
be used as a reference model in the following to describe the travelling-wave regime.
Notice that the long-wave expansion of (2.14) (see Appendix A) leads directly to
the BE (2.2) so that the physics included in the BE is already present in the WIBL
model.

In a moving frame of reference ξ = x − c t , (2.14a) can be integrated to yield

q = c h + Q, (2.15)

and assuming as before h 
=0, (2.14b) gives

h′′′ = FWIBL[h, h′]

=
1

Ka

(
3

h3
(Q + c h) − S − 54

35

Q2h′

h3
+

6

35

c h′

h2
(c h − Q)

+
√

1 − S2h′ − 3

2

Bi Mah′

h(1 + Bih)2

)
. (2.16)

The value of the integration constant Q represents, as in § 2.1.2, the (negative) mean
flow rate in the moving frame of reference, i.e. underneath the wave. The periodic
stationary solutions of (2.16) are determined using the dynamical system (2.12) by
simply replacing F by FWIBL. Notice that (2.11) and (2.16) differ only by the inertial
terms.

2.3. Closed and open flow conditions

Periodic boundary conditions, commonly implemented in numerical simulations,
correspond to a closed flow, for which the liquid flowing out is reinjected at the
inlet. Therefore the closed flow condition is

X
∣∣
x=λ

= X
∣∣
x=0

∀t (2.17)

where X refers to any flow variable and λ is the length of the domain. Nevertheless,
because the flow is gravity-oriented, the closed flow condition cannot be achieved
experimentally. Indeed in experiments, the flow is open and when, at the inlet, the
film is forced at a given frequency, the waves keep their periodicity in time, at least
until the onset of secondary instabilities. In this situation, the open flow condition
can be written as

X
∣∣
t=τ

= X
∣∣
t=0

∀x (2.18)

where τ is the period.
We shall discuss those conditions using the mass conservation equation (2.14a).

In the case of a periodic modulation of the film surface, the space average of
∂th + ∂xq = 0, together with the closed flow condition (2.17), gives

d

dt
〈h〉x = 0 (2.19)
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where 〈·〉x = (1/λ)
∫ λ

0
· dx. The amount of liquid in the domain is constant at any

time t and equal to its value at the initial time. Transposing this condition to the
computation of travelling waves yields

〈h〉ξ = hN, (2.20)

which will be referred to hereafter as the closed flow condition.
Turning to a time-periodic modulation of the film surface, the time average of

(2.14a), together with the open flow condition (2.18), gives

d

dx
〈q〉t = 0. (2.21)

The average flow rate is independent of the location x and therefore equal to its inlet
value. Again transposing this condition to the computation of travelling waves gives

〈q〉ξ = qN, (2.22)

which will be referred to hereafter as the open flow condition.
The consequence for the choice of the flow condition for travelling-wave solutions

appears now by averaging (2.15):

〈h〉ξ =
〈q〉ξ − Q

c
. (2.23)

In experiments, for which the open flow condition applies, the control parameter is
the flow rate at the inlet whose dimensionless value is the Reynolds number Re= qN.
Then (2.22) with (2.23) shows that the average film thickness 〈h〉ξ = (Re−Q)/c will be
influenced by the wave features c and Q. For instance, Alekseenko et al. (1994) have
observed experimentally a decrease of the average film thickness downstream related
to an increase of the phase speed of travelling waves. On the contrary, if we impose
the closed flow condition, the insertion of (2.20) into (2.23) gives 〈q〉ξ = chN +Q. This
implies that the effective flow rate 〈q〉ξ will deviate from the imposed one qN = Sh3

N/3
(i.e. Re) depending on the evolution of the travelling waves. For instance, an increase
of the phase speed leads to an underestimation of the Reynolds number qN < 〈q〉ξ .

3. Blow-up of the Benney equation for closed flows
Salamon et al. (1994) computed travelling-wave solutions of the Navier–Stokes

equations for a film falling on a vertical (S = 1) and isothermal (Ma= 0) wall with
varying Re at fixed We= 1000 and εL = 0.04/2π. They imposed the closed flow
condition (2.20). The solid line in figure 2 shows their results for the reduced maximum
film thickness hmax/hN of the solutions.† Using the dynamical system (2.12) with (2.16),
we computed the curve corresponding to the WIBL model (dot-dashed line). Note
the remarkable agreement with Salamon et al.’s results in this range of Reynolds
numbers. On the other hand, the curve computed for the BE with (2.11) (dashed line)
shows a fold at Re∗ � 4.8. Oron & Gottlieb (2002) computed corresponding travelling-
wave solutions by performing time-dependent simulations of the BE (circles). They

† Note that the parameters We and εL both depend on hN (see (2.5) and (2.13)); remember that
hN = (3Re/S)1/3. Hence the fluid properties change continuously along the curves in figure 2 since
for increasing Re, Ka increases proportionally to Re2/3 and the wavenumber k of the travelling-wave
solutions decreases proportionally to Re−1/3. This drawback is removed with our scaling where Re
alone accounts for the Nusselt film thickness hN .
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Figure 2. Maximum thickness of travelling-wave solutions hmax/hN as a function of Re,
computed with the BE (dashed curve) and the WIBL model (dot-dashed curve) under the
closed flow condition for a film falling on a vertical (S = 1) and isothermal (Ma = 0) wall;
We= 1000 and εL =0.04/2π. For comparison, results of the Navier–Stokes equations (solid
curve) obtained by Salamon et al. (1994) as well as results from time-dependent simulations
of the BE (circles) obtained by Oron & Gottlieb (2002) are displayed.

only found stable solutions for the small-amplitude part of the dashed curve. Those
solutions are bounded and exist only for Re< Re∗. For Re>Re∗, the BE exhibits no
stationary wave solution and any perturbation of the flat film is unbounded, i.e. it
yields a finite-time blow-up: h(x∗, t) →∞ at some point x∗ as t → t∗ <∞.

Now, let us calculate families of stationary solutions of the BE and the WIBL
model and characterize the blow-up of the BE in the whole spectrum of unstable
wavenumbers.

3.1. Families of stationary solutions

For a vertically falling and isothermal film, Chang et al. (1993) constructed the
travelling-wave solutions bifurcating from the neutral stability curve as a function
of their wavenumber for the boundary-layer equation (see Appendix A) at moderate
Reynolds number. They distinguished two main families of waves. The first one,
referred to as the hole wave family and denoted by γ1, terminates at small wavenumbers
as slow solitary-like waves with a dominant depression, i.e. hmax −hN < hN −hmin. The
second family, referred to as the hump wave family and denoted by γ2, corresponds to
fast waves with a dominant elevation. The γ1 and γ2 families can bifurcate either as
respective Hopf and period-doubling bifurcations, or vice versa. The bifurcations of
the families may be reversed if the dispersion of the waves is modified (Salamon et al.
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Figure 3. Bifurcation diagram showing the phase speed c/cL and maximal amplitude hmax/hN

of travelling-wave solutions versus wavenumber k. The parameters are S = 1, Ma = 0 (vertical
and isothermal wall), Re= 2.0667 and Ka= 3375. The closed flow condition is imposed. The
solid (resp. dashed) lines are families obtained with the BE (resp. WIBL model). The γ2

families correspond to fast one-hump waves and γ1 ones to slow one-hole waves, as illustrated
by the two corresponding insets. The arrows and letters refer to solutions plotted in figure 4.
HB: Hopf bifurcation; PD: period doubling; IP: intersection point. The HB bifurcates from
the Nusselt flat film solution while the PD bifurcates from the families of n= 2 subharmonic
solutions (not drawn on the figure).

1994). The Kawahara equation that contains such dispersion terms has been studied
by Chang, Demekhin & Kopelevitch (1993). They showed that the existence of the
two families of slow and fast waves results from an imperfect pitchfork bifurcation
(Drazin 1992) from a family of standing waves (that travel at exactly three times the
average velocity of the flow). Such a bifurcation is in consequence sensitive to the
dispersive effects as shown below.

The bifurcation diagram in figure 3 shows as solid lines the two first wave families
of the BE characterized by the reduced maximum wave thickness g = hmax/hN and the
phase speed c/cL (where cL is the linear phase speed) as a function of the wavenumber
k. The parameters are Re= 2.0667, Ka= 3375, S = 1 and Ma = 0, which correspond
to a vertically falling, isothermal film of water at 20 ◦C (see table 1).† The closed flow
condition (2.20) is enforced. The γ2 family starts at cut-off wavenumber kc

† Some authors we refer to (e.g. Salamon et al. 1994; Oron & Gottlieb 2002) based the Reynolds
number on the surface velocity rather than on the mean velocity, which yields R= 3Re/2. Therefore,
Re= 2.0667 corresponds to R = 3.1 and Ka = 3375 to We = 1000 with hN = 1.8371.
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Liquid lν (µm) tν (ms) Ka Ma|�T = 1 K Bi|α =100 W m−2 K−1

Water at 20 ◦C 47 2.2 3375 8.9 0.008
Water at 15 ◦C 50 2.3 2950 7.7 0.009
FC-72 at 20 ◦C 26 1.6 1100 9.7 0.045
MD-3F at 30 ◦C 31 1.8 703 5.8 0.047
25%-Ethyl alcohol at 20 ◦C 87 3.0 500 1.5 0.02

Table 1. Rounded values of characteristic liquid parameters (Weast & Selby 1966). These
liquids are used in experiments (Kabov et al. 1996; Kabov & Chinnov 1997). See Appendix B
for the estimated value of α.

corresponding to the Hopf bifurcation point (HB). This bifurcation is supercritical,
so the wavelength of solutions is larger than at threshold 2π/kc. It yields stationary
waves that become increasingly of one-hump type and faster as k decreases. In the
limit k → 0, the solutions correspond to homoclinic orbits in the phase space and will
be referred to as homoclines. The γ2 family appears by period doubling (PD). The
corresponding waves become increasingly of one-hole type and slower as k decreases.

As the wavenumber decreases, higher harmonics become linearly unstable at
kn = kc/n with n= 2, 3, . . . . The resulting families γ n

1,2 for n> 1 correspond therefore
to n-hump or n-hole travelling-wave solutions. Their maximum heights gn(k) are not
displayed in figure 3 because they are homothetic in k, i.e. given that gn(kn) = g(kc) it
follows that gn(k/n) = g(k). The individual solutions correspond simply to n identical
solutions of the n= 1 family placed in a domain of size 2πn/k.

The dashed lines in figure 3 represent the wave families computed with the WIBL
model. In contrast to the BE, the γ2 family appears by period doubling while the γ1

family emerges from the cut-off wavenumber. As already mentioned, this disagreement
can be understood by considering the sensitivity of the imperfect pitchfork bifurcation
to slightly different dispersions which originate from the different accounts taken of
the inertial effects (compare (2.11) with (2.16)). The intersection point (IP) between
the γ1 and γ2 families for the WIBL model indicates the wavenumber below which
hole and hump wave solutions are discernible.

On figure 3, the differences between the maximal amplitudes of hump solutions
computed with the BE and the WIBL model do not exceed 10% and are much
smaller for hole solutions. The comparison of profiles of one-hump travelling-wave
solutions is displayed in figure 4. The corresponding wavenumbers are shown by
arrows at the top of figure 3. We can conclude that for the given parameters, the
agreement between the BE and WIBL model is satisfactory in the whole spectrum of
wavenumbers.

Because the hump solutions have a larger maximal film thickness hmax than the
hole ones, they will be subject to blow-up at smaller Reynolds number. This can
be understood from the nature of the strongly nonlinear term ∼ ∂x(h

6∂xh) in (2.2)
responsible for singularities. Similarly, at a given k the one-hump solutions are more
‘dangerous’ than multi-hump ones. Indeed, Pumir et al. (1983) observed that during
evolution the only kind of wave that could be recognized is the one-hump solution.
It evolves into a solitary wave and then blows up in finite time for Re >Re∗. Hence,
we will only focus in the following on one-hump travelling-wave solutions in order
to discuss the validity domain of the BE, first in terms of their existence and next in
terms of their accuracy. Their stability will be addressed later in § 5.
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Figure 4. Profiles of one-hump travelling-wave solutions computed with the BE (resp. WIBL
model) shown as solid (resp. dashed) lines for S = 1, Ma = 0, Re =2.0667 and Ka= 3375 and
wavenumbers: (a) k = 0.0256, (b) k = 0.0169, (c) k = 0.0128, (d) k = 0.0084. The closed flow
condition was imposed.

3.2. Blow-up versus wavenumber

In this section, we analyse the existence of one-hump wave solutions of the BE
and show that their absence is closely linked to the finite-time blow-up observed in
simulations.

The bifurcation diagram in figure 5 shows as solid lines families of one-hump
travelling-wave solutions computed with the BE for several Re. The fixed parameters
S = 1, Ma = 0 and Ka= 2950 correspond to a vertically falling, isothermal film of
water at 15 ◦C (see table 1) like in experiments by Kapitza & Kapitza (1949). The
closed flow condition (2.20) has been used. The dashed curves are the corresponding
wave families computed with the WIBL model. For Re � 3, the BE wave families
feature a saddle–node bifurcation at k∗ indicated by an asterisk. This implies that
for k < k∗ the BE has no stationary solution of γ2 fast wave type. For k > k∗, two
stationary solution branches coexist. Pumir et al. (1983) and Oron & Gottlieb (2002)
have shown that only the lower branch of the small-amplitude solution corresponds to
bounded solutions (note that the WIBL model does not possess the larger-amplitude
branch). The bifurcation at kc is supercritical for Re � 5. However, the interval [k∗, kc]
shrinks with increasing Re until it vanishes. For larger Re the Hopf bifurcation
becomes subcritical. Note the intrinsic structure of the families for Re = 5.75 and 6
where a second saddle–node is present as indicated by a cross on figure 5.

In figure 6 we plot the locus, denoted by k∗, of the saddle–node bifurcations of the
γ2 family as a function of Re (dashed line), together with the cut-off wavenumber
kc (solid line). The flat film is linearly stable above kc, one-hump γ2 travelling-wave
solutions can be found between the solid and the dashed line only. The asterisks and
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Figure 5. Bifurcation diagram showing as solid lines families of one-hump wave solutions
for various Re computed with the BE with S = 1, Ma = 0, Ka=2950 and the closed flow
condition. A = (hmax − hmin)/hN is the reduced wave amplitude. The dashed lines are the
branches computed with the WIBL model for Re= 2, 3, 4, 5 and 6 (bottom to top). Asterisks
and crosses indicate saddle–node bifurcations, the loci of which are followed through the
parameter space in figure 6. IP: intersection point as in figure 3.

crosses indicate the saddle–node bifurcation points obtained in figure 5. The inset of
figure 6 shows the existence of a sub-domain bounded from below by the solid curves
and by the dashed lines otherwise. The solutions in this domain are always unstable
since they originate from a subcritical bifurcation (see for instance the Re = 6 wave
family in figure 5). This subcritical behaviour is most likely non-physical and has not
been observed with our reference model. This behaviour will be analysed in more
detail in § 4.4.2.

Oron & Gottlieb (2002) have performed simulations of travelling-wave solutions for
various wavenumbers k and obtained a boundary for finite-time blow-up as marked
by circles in figure 6. This boundary matches perfectly the absence-of-solution one
for one-hump travelling waves, except for the two points at the bottom, which match
the absence-of-solution boundary of two-hump solutions, i.e. for n= 2 (dotted line
in figure 6). The sensitivity to initial conditions in simulations could explain this
discrepancy. However, our results show unequivocally, and for the whole spectrum of
unstable wavenumbers, the link between the saddle–node bifurcation point of the BE
for the γ2 wave family and the finite-time blow-up observed in simulations.

We are now able to define two particular values of the Reynolds number as
indicated in figure 6: Re∗

h for k∗ → 0 at which only homoclines become singular and
Re∗

c for k∗ = kc at which all the linearly unstable modes lead to singularities. Re∗
h and

Re∗
c will be used to globally feature the validity domain of the BE. For the sake

of clarity, and since we have identified the finite-time blow-up boundary with the
absence-of-solution one, we will only refer to the former in what follows.
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Figure 6. Stability diagram computed with the BE (same parameters as for figure 5). The
solid line is the neutral curve kc. The Nusselt flat film is stable for k > kc . The dashed line
is the absence-of-solution boundary separating zones of stationary solutions (on the left) and
of absence of one-hump solution (on the right). The dotted line is the same boundary for
two-hump solutions (n=2). The circles mark the finite-time blow-up boundary obtained by
Oron & Gottlieb (2002). Re∗

h and Re∗
c indicate the Reynolds numbers at which homoclines

blow up and at which all the linearly unstable modes blow up, respectively. The asterisks and
crosses correspond to the saddle–node bifurcation points as shown also in figure 5. The inset
enlarges the parameter range where the Hopf bifurcation becomes subcritical.

4. Parametric study for closed and open flows
In this section, we first study systematically the blow-up features of the BE for

falling films on vertical and isothermal walls. Thereby, both closed and open flow
conditions are analysed. The accuracy of the stationary solutions of the BE (when
they exist) is determined using again the WIBL model as reference. Finally, the
influence of inclination and the Marangoni effect is investigated.

4.1. Reduced systems and parameters

Keeping track of the domain boundaries in parameter space where stationary solutions
exist is quite involved: five parameters can be varied, namely the inclination of the
plane (S), surface tension (Ka), its sensitivity to temperature (Ma), the heat transfer at
the interface (Bi) and finally the inlet flow rate (Re). Fortunately, at first order – due
to the neglect of viscous streamwise dissipation – the number of parameters can be
reduced by one by applying a transformation proposed initially by Shkadov (1977).
Moreover, this number can be reduced to three in the reasonable limit of small Biot
number (see Appendix B and table 1).
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Shkadov’s transformation can be written as: x → L x, h → hN h, t → L t/(Sh2
N),

where L = (KahN/S)1/3 with hN = (3Re/S)1/3. The BE (2.2) then becomes

∂th + ∂x

(
h3

3
+

2

15
R h6 ∂xh − Ch3

3
∂xh +

h3

3
∂xxxh +

h2

2

M B ∂xh

(1 + B h)2

)
= 0, (4.1)

where

R = S
h4

N

L , C = cotβ
hN

L , M =
Ma

ShNL , B = hNBi.

Similarly the WIBL model (2.14) with q → Sh3
Nq becomes

∂th = −∂xq, (4.2)

R ∂tq =
5

6
h − 5

2

q

h2
+ R9

7

q2

h2
∂xh − R17

7

q

h
∂xq − C5

6
h ∂xh +

5

6
h ∂xxxh +

5

4

M B ∂xh

(1 + B h)2
.

(4.3)

Using (2.4), the relationships with the set of parameters (2.1) are

R = (3Re)11/9 S1/9 Ka−1/3, (4.4)

C = (3Re)2/9 S−8/9 Ka−1/3
√

1 − S2, (4.5)

M = (3Re)−4/9 S−2/9 Ka−1/3 Ma, (4.6)

B = (3Re)1/3 S−1/3 Bi. (4.7)

In this scaling, the Nusselt solution is h = 1 and the Hopf bifurcation is characterized
by

kc =

(
2

5
R − C +

3

2

M B
(1 + B)2

)1/2

, cL = 1, QL = −2

3
. (4.8)

The wavenumber is rescaled as k → k/L. Note that Shkadov (1977) defined his
reduced Reynolds number as δ = R/45. Note also that rescaling time t by 1

3
shows

the equivalence between (4.1) and (1.2) for C =0 and M = 0 when Φ = 2R/5 and
m =6.

4.2. Vertical and isothermal films

4.2.1. Open and closed flows

Figure 7 shows the stability diagram in the (k,R)-plane for a vertically falling,
isothermal film, i.e. M = C = 0. The solid line is the neutral curve kc computed
with (4.8). The dashed and dot-dashed lines are the blow-up boundaries computed
using, respectively, the closed flow condition 〈h〉

ξ
= 1 and the open flow condition

〈h〉
ξ
= (1/3 − Q)/c, as defined with the new scaling. A major difference can be

observed between the two flow conditions. As displayed in the inset of figure 6, for
the closed flow condition the Hopf bifurcation can become subcritical. For the open
flow condition the Hopf bifurcation is supercritical for all R. This implies that close to
criticality the BE should always give bounded solutions with the open flow condition.
However, figure 7 also shows that for R > R∗

c |OP the corresponding region of k is
very small. The inset of this figure shows the blow-up boundary for open flow in the
vicinity of R∗

c |OP.
The blow-up features as introduced in § 3.2 can be now extracted from figure 7 as

R∗
h = 0.986, R∗

c |CL = 2.358, R∗
c |OP = 5.401,
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Figure 7. Stability diagram in the (k, R)-plane for a vertically falling, isothermal film, i.e.
C = M = 0. The solid line is the neutral stability curve. The dashed (resp. dot-dashed) line is
the blow-up boundary corresponding to the closed (resp. open) flow condition. The dotted line
is the boundary where the amplitude of solutions of the BE exceed by about 10% the one of
the WIBL model. The inset enlarges the blow-up boundary in the vicinity of R∗

c |OP.

where the subscripts CL and OP indicate the corresponding flow condition. Note
that since homoclines are solutions of infinite wavelength, they do not depend on
the flow condition. To check for instance the blow-up features in the case of a water
film at 20 ◦C (see table 1) we use (4.4) to obtain the specific Reynolds numbers
Re∗

h = 3.0, Re∗
c |CL = 6.2 and Re∗

c |OP = 12.2. It appears that the range of Re in which
solutions are bounded is larger with the open flow condition than with the closed one.
Nevertheless, this bounding is conditional on the wavenumber, i.e. k > k∗. Also, no
definitive conclusion can be drawn before addressing the accuracy and the stability
of the stationary solutions.

4.2.2. Accuracy of bounded solutions: BE versus WIBL

The dotted line in figure 7 indicates the loci of bounded solutions of the BE where
the amplitude exceeds by about 10% the one computed with the WIBL model. On
this line, the phase speed is overestimated by about 20% with the BE. Interestingly,
this boundary is approximately identical for both flow conditions. To the right of this
boundary, the difference of the amplitudes of the BE and WIBL model increases to
reach about 100% at the respective blow-up boundaries. Even though the open flow
condition gives bounded solutions for larger R than the closed flow condition, the
wave amplitudes become much larger than for the WIBL model. So the 10%-accuracy
limit is a good gauge for both flow conditions.

The 10%-accuracy limit approaches the neutral stability curve asymptotically. This
can be seen in figure 5 where for Re= 4, 5 and 6 the discrepancy between the BE and
the WIBL model is already large quite close to the Hopf bifurcation. The accuracy
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Figure 8. Stability diagram in the (C, R)-plane for an isothermal film, i.e. M = 0. The solid
line is the neutral stability curve. The different regions from the left to the right are: S, the
linearly stable region; U, the linearly unstable region where the BE gives bounded solutions in
the whole range of unstable wavenumbers kc > k > 0; Uk |CL, the linearly unstable region where
the BE gives bounded solutions only in the range kc > k > k∗ when the closed flow condition
is enforced; Uk |OP, the same when the open flow condition is enforced; B, the region where all
the linearly unstable modes are unbounded and yield finite-time blow-up. The circle represents
a saddle–node bifurcation point found by Pumir et al. (1983) with numerical simulations for
β =11.3◦ and We =3000. The plus sign corresponds to parameters of simulations by Joo et al.
(1991). The dot-dashed lines are the loci of the reduced parameters corresponding to fixed
inclination angle and fluid properties when the flow rate (or Reynolds number) is varied.

limit in figure 7 intersects the R-axis at

R10%

h = 0.68,

which gives Re= 2.23 for water at 20 ◦C. The range of validity of the BE is therefore
significatively reduced if the solutions are required to be accurate.

Finally, using (4.4), we can also conclude that the range of validity of the BE, i.e.
the range of Re for which solitary waves (homoclines) are bounded and less than
10% accurate, increases with the Kapitza number as Ka3/11.

4.3. Influence of inclination

Figure 8 shows the stability diagram of the BE in the (C, R)-plane computed with
(4.1) for an isothermal film, i.e. M =0. The solid line corresponds to the neutral
stability curve kc = 0, i.e. C = 2R/5, above which the flat film is stable, “S”, and
below which it is unstable, “U”. The heavy dashed line indicates the boundary where
homoclines blow up (R∗

h), whereas at the dashed and the long dashed lines all the
linearly unstable modes blow up (R∗

c) for closed (CL) and nearly all for open (OP)
flow conditions, respectively. The solutions in the region “Uk” are bounded only in the
range of wavenumbers [k∗, kc] and unbounded in the range [0, k∗]. In the region “B”
waves blow up unconditionally at any wavenumber (except very near the threshold
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for the open flow condition). Finally, the dotted line is the locus of the parameter
R10%

h defined in § 4.2.2.
The dot-dashed lines in figure 8 correspond to fixed physical properties of some

common liquids (see table 1) for two different inclinations of the wall, namely 10◦

and 30◦. These curves are computed by eliminating Re from C and R using (4.4),
(4.5). This leads to the relation

C =
√

1 − S2

(
R2

S10Ka3

)1/11

. (4.9)

Increasing C, i.e. decreasing S and/or Ka, reduces the range of validity of the BE in
the linearly unstable domain.

Joo et al. (1991) have performed time-dependent simulations of the BE for
isothermal falling films using the closed flow condition. Their figures 5–9 present the
respective wave evolutions for increasing domain size, i.e. decreasing wavenumber.
The parameters are β = 45◦, Re= 1.179, Ka= 4.386 and Ma = 0. This corresponds to
(R, C) = (2.751, 0.778) in the reduced scaling, i.e. to a point in the region “Uk|CL”
of figure 8 (see the plus sign), indicating that solutions are only bounded for k > k∗.
It then agrees with travelling waves found in figures 5, 6 and 7 of Joo et al. (1991).
On the other hand, figures 8 and 9 of their paper show ‘catastrophic’ behaviour, i.e.
wave amplitudes growing ‘explosively’ in finite time. Our explanation is that k < k∗ for
these simulations. Using their scaling, the blow-up boundary is indeed at k∗

JDB = 1.236.
Therefore, the ‘catastrophic behaviour’ found by Joo et al. (1991) results from the
blow-up character of the BE and is not associated with a secondary instability as
conjectured by these authors. By coincidence, due to the choice of the parameter
values in their paper, the transition for the secondary instability at ks ≈ kc/2, found
initially by Gjevik (1970) using weakly nonlinear analysis, is very close to the blow-up
transition. Joo et al. (1991) also suggested that waves never equilibrate for k < ks. Yet,
the present study shows that waves can be bounded in this region either for R < R∗

h

or if k > k∗.

4.4. Influence of the Marangoni effect

4.4.1. Small Biot number limit: Bi � 1

For common liquids, the Biot number is usually in the range from 10−2 to 10−3

(see table 1 and Appendix B). Therefore we can use the approximation

M B
(1 + B h)2

≈ MB (4.10)

in (4.1) and (4.3) to study the Marangoni effect with MB as a single parameter. In
this limit, and looking at the generic equation (1.2), the Marangoni term behaves as
an m =2 term and does not lead to singularity.

Figure 9 represents the stability diagram of the BE in the (MB, R)-plane for a
vertical wall, i.e. C = 0. The legend is the same as for figure 8. Here, a range of
unstable wavenumbers exists for all R. The dot-dashed lines in figure 9 correspond
as before to fixed liquid properties (table 1). They are calculated using

MB = Ma Bi

(
1

S6Ka4R

)1/11

, (4.11)

obtained by eliminating Re from MB and R with (4.4), (4.6), (4.7).
The domain of existence for homoclines nearly vanishes for large MB. However,

as indicated in table 1, the product MaBi remains small for common liquids (Scheid
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Figure 9. Stability diagram in the (MB, R)-plane for a vertically falling film, i.e. C = 0. Line
styles and small letters are as in figure 8.

et al. 2002). For instance, for a vertically falling water film at 20 ◦C the value MaBi= 2
corresponds to �T = 28 K when α =100 Wm−2 K−1. In this case, the BE can be used
with satisfactory accuracy up to Re =1.8 (R10%

h = 0.52).
Joo et al. (1991) have performed time-dependent simulations of the BE for large Biot

number. For the case of figure 14 in their paper, for β = 45◦, Re = 1.179, Ka=4.386,
Ma= 11.696 and Bi= 5.848, they observed blow-up of the travelling wave. This
result is expected given that solutions blow up even for Ma =0 (see the plus sign in
figure 8), and that the Marangoni effect further decreases the validity domain (see
figure 9). Nevertheless, a region (although small) possessing bounded solutions is
always present, i.e. whatever the value of MB.

4.4.2. Subcritical behaviour of the Benney equation

For the isothermal case we have seen in figure 5 that the Hopf bifurcation computed
with the BE is always subcritical for Re >Re∗

c . However, the bifurcation has already
become subcritical even slightly before Re∗

c as shown by the inset of figure 6: in the
sub-domain bounded from below by the solid line and by the dashed curves otherwise,
the family of solutions has not one but two saddle–nodes or turning points. Pumir
et al. (1983) have shown that the blow-up of the BE is linked to the absence of
homoclinic solutions. We have furthermore shown that the subcritical bifurcation is
related to the absence of all solutions in the unstable range of wavenumbers. In this
sense, the subcritical behaviour is non-physical for isothermal conditions. We thus
analyse here how this behaviour is influenced by the Marangoni effect and whether
the subcritical bifurcation in this case has a physical meaning.

Figure 10 displays the stability diagram for different values of MB for closed
(dashed lines) and open (dot-dashed lines) flow conditions. The corresponding neutral
stability curves are plotted as dotted lines. The figure shows that for closed flow the
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Figure 10. Stability diagram in the (k, R)-plane for a vertically falling film, i.e. C = 0 and
different values of MB = 0, 0.25, 0.5, 0.75 and 1. The dotted lines are the corresponding
neutral curves kc and the dashed lines are the blow-up boundaries obtained with the closed
flow condition. The dot-dashed lines are a selection of the blow-up boundaries obtained with
the open flow condition. The inset shows bifurcation diagrams for MB = 0.5 and R = 1.8
(resp. R = 5) with the closed (resp. open) flow condition, where the thick lines are computed
with the BE and the thin lines with the WIBL model.

sub-domain where subcritical bifurcations are found extends towards smaller R < R∗
c

for increasing MB. A similar observation is made for the open flow condition
also. Although there the Hopf bifurcation is always supercritical, the family has an
additional turning point slightly above the bifurcation, as illustrated by the inset
of figure 10. The resulting three turning points allow a similar shape of the large-
amplitude part of the bifurcation diagram as for the closed flow condition. Notice
that no difference was observed in the curves of figure 10 when dispensing with the
small Biot number limit approximation (4.10), and using the common values of the
Biot number as indicated in table 1.

Now, we can pose the question, is this subcritical behaviour physical with the
Marangoni effect? For a horizontal layer, VanHook et al. (1997) found that the
Marangoni instability is subcritical and predict a blow-up of the solution. However,
as pointed out by Kalliadasis et al. (2003a), this is not a true singularity formation, as
forces of non-hydrodynamic origin, namely van der Waals forces not included here,
become increasingly important in the region of very thin films and will arrest this blow-
up behaviour. Kalliadasis et al. (2003a) have also shown that the dry patch formation
is associated with a divergence of the characteristics (amplitude, phase speed) of
the solutions but is not associated with the absence of solution. Therefore, we can
state that the subcritical behaviour of the Benney equation including the Marangoni
effect described above is unphysical, in contrast to the subcritical instabilities known
for horizontal planes. Let us give two more arguments for this: (i) the dry patch
formation is obviously linked to the Marangoni effect and does not appear in the
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isothermal case, yet the boundaries in figure 10 are obtained by continuation from
the isothermal case, and we know that the subcritical bifurcation in the isothermal
case is unphysical; (ii) we find that for vertically falling films, our reference model
(WIBL) never yields subcritical behaviour. This is illustrated in the inset of figure 10
by the thin lines.

Note that in the case of the closed flow condition, figure 10 indicates that the
bifurcation is subcritical for all R when

MB ≈ 1.

This implies that above this value for MB the Benney equation fails to describe the
physics for vertically falling films, even close to criticality.

5. Stability of stationary solutions
This section analyses the two-dimensional stability of the stationary one-hump

solutions discussed up to now. We focus especially on the range [R∗
h, R∗

c] where only
part of the linearly unstable modes results in bounded stationary solutions. We will
determine the stability of those solutions to disturbances of larger period that may
induce the coalescence of humps. This is done by performing a Floquet analysis
following, for instance, Chang et al. (1993). Let h0(ξ ) be the travelling-wave solution
of wavenumber k. Then the film thickness h is written as the superposition of this
solution and a small disturbance

h = h0(ξ ) + ηh1(ξ ) exp{iςkξ + st}, (5.1)

where η � 1 and h1 is a real function with the same period as h0; s = sr + isi where
the real part sr corresponds to the growth rate of the disturbance and the imaginary
part si to the relative phase velocity. The detuning parameter ς represents the ratio
of the wavenumber of the disturbance and that of the travelling-wave solution h0(ξ ).
For ς =0 the instability has the same wavelength as the wave, and for 0 <ς � 1

2
the instability is sub-harmonic. It is called side-band when ς is close to zero (Chang
et al. 1994). For instance, ς = 1

2
implies that the disturbance has twice the period

of the wave. Substituting (5.1) into (2.2) and linearizing in η amounts to solving an
eigenvalue problem of the form sh1 = L(h0, c, Q, ς)h1 where L is a linear operator.

Figure 11 shows the growth rate max(sr ) of the most amplified disturbance and the
corresponding detuning parameter ςmax versus the wavenumber of travelling-wave
solutions, for R = 1.5 and 3, with C = M =0. The heavy and thin lines result from the
BE and WIBL model, respectively, whereas solid and dashed lines stand for the closed
and open flow condition, respectively. The blow-up boundary at k∗ is indicated by an
asterisk and the neutral mode by the letter c. The blow-up features of the stationary
solutions analysed here can be found in figure 7. For the value of R considered, the
growth rate max(sr ) is positive for all k implying that none of the bounded solutions
emerging from the Hopf bifurcation is stable to sub-harmonic disturbances. If the
imaginary part of s (not shown in figure 11) is equal to zero the waves coalesce
steadily by a relative translation of the humps and by volume transfer between
the humps (Chang et al. 1995). This is the case for the WIBL model. In contrast, for
the BE the imaginary part of s is non-zero. This indicates that the instability leads to
oscillating behaviour that may or may not lead to coalescence. Only time-dependent
simulations of the BE can clarify this point. An example is presented in figure 12.
Two periods of a stationary solution calculated with the closed flow condition and
corresponding to the point (R, k) = (1.5, 0.5) in figure 7 with additional noise are
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Figure 11. Maximum real part of the growth rate max(sr ) of disturbances and corresponding
detuning parameter ςmax, versus wavenumber of stationary solutions of the BE (thick lines)
and the WIBL model (thin lines). The solid (resp. dashed) lines correspond to closed (resp.
open) flow. The letter c indicates the neutral mode at kc and the asterisk indicates the solution
at the blow-up boundary, i.e. for k∗. The calculations are made for a vertically falling and
isothermal film, i.e. C = M = 0.

used as initial condition. The time series for the amplitude at a fixed point in space
(figure 12) shows that the ongoing process comprises growing sinusoidal oscillations
of the relative amplitudes of the two humps that lead to a coalescence-mediated
finite-time blow-up. We propose to call this type of coalescence oscillation-mediated
coalescence (see also Bestehorn, Pototsky & Thiele 2003).

The results of the stability analysis are important because physically relevant
domains are always at least twice the wavelength of the stationary solution. Thereby,
sub-harmonics will always develop, and for R � R∗

h, blow-up will be promoted by
coalescence as illustrated above in figure 12. For instance, looking at the blow-up
boundary for the closed flow condition in figure 7, at any R larger than ∼1.4, a
bounded one-hump travelling-wave solution put twice in a domain of double size is
unstable and yields finite-time blow-up. The same happens for the open flow condition,
at any R larger than ∼1.8. In conclusion, even thought the Benney equation gives
bounded solutions beyond the blow-up boundary for homoclines R∗

h, those solutions
should be considered with special care, and this is true for both flow conditions.

6. Concluding remarks
The Benney equation has been investigated, including the effects of surface tension,

wall inclination and thermocapillarity. We focused on the validity of travelling-wave
solutions in terms of accuracy and finite-time blow-up. The accuracy was checked by
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Figure 12. Time simulation starting from two periods of a stationary solution of the BE for
R = 1.5 and k =0.5, put into a periodic domain of size 8π. A noise of amplitude 10−3 is added
at t =0. The main plot represents the time series of the film thickness recorded at the point
ξ = 7π. The upper insets show, respectively, the two travelling-wave solutions at t ≈ 100 and
the coalesced wave at t ≈ 850. The lower inset gives an enlargement of part of the time series
showing the oscillatory mode.

comparison with a reference model developed by Ruyer-Quil & Manneville (2000,,),
to which we added the Marangoni effect. This model was shown to agree with the
Benney equation at low Reynolds number where the exact long-wave expansion is
known to apply.

We have established in this paper the equivalence between the boundary beyond
which the dynamical system associated with the Benney equation has no travelling-
wave solutions and the boundary for finite-time blow-up obtained in simulations by
Oron & Gottlieb (2002). The solutions that tend to blow up first, i.e. at the smallest
Reynolds number, were found to be the one-hump solitary waves, that correspond to
homoclinic orbits of the associated dynamical system. These solutions are identical
for closed and open flow conditions. For vertically falling isothermal films these
one-hump solitary waves are bounded only if Re < 0.330 Ka3/11. Furthermore, the
accuracy of their amplitudes is below 10% for Re < 0.243 Ka3/11. The accuracy and
blow-up boundaries were also computed for solutions of finite wavelength above
the linear stability threshold. We defined and determined a third limiting Reynolds
number above which none of the linearly unstable modes is bounded for the closed
flow condition. For the open flow condition only a narrow range of linearly unstable
modes leads to bounded solutions above this value. We reduced by two the number
of independent parameters by rescaling the Benney equation and taking the small
Biot number limit, which is confirmed by experimental evidence (Kabov, Marchuk &
Chupin 1996, see also Appendix B). This enabled us to study exhaustively the influence
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of inclination and thermocapillarity on the accuracy and blow-up boundaries. Both
effects narrow the range of Reynolds numbers in which the Benney equation is
applicable as summarized in figures 8 and 9.

We paid particular attention to the flow condition that can correspond either to
closed or open flow. While the former is widely used in literature, only the latter
coincides with realistic experimental conditions. For the open flow condition the
validity domain of the Benney equation is larger than for the closed flow condition.

In this paper, we have accurately demonstrated for the Benney equation the link
between absence-of-solution and blow-up boundaries for the closed flow condition.
For the open flow condition, this link is just conjectured and should be addressed in
a future work. In the same vein, weakly nonlinear analysis of the Benney equation for
the closed flow condition is classical and provides, for instance, the transition between
supercritical and subcritical bifurcations at R > 5/121/3 ≈ 2.184 for isothermal and
vertical films (see figure 7 and Oron & Gottlieb 2004). On the other hand, weakly
nonlinear analysis in the case of open flow has not been yet realized up to now. We
therefore rely on our numerical findings.

In the isothermal case and with the open flow condition the Hopf bifurcation
is always supercritical while with the closed flow condition, the Hopf bifurcation
becomes subcritical above the Reynolds number at which none of the linearly unstable
modes is bounded. This subcritical bifurcation is shown to be an anomaly of the
Benney equation and therefore unphysical, even for the heated case. In this latter case,
we even found that above MB ≈ 1, all the bounded solutions emerge by subcritical
bifurcation so that the Benney equation is totally inapplicable.

We did not vary simultaneously the strength of the Marangoni effect and
the wall inclination. However, combining our results with the ones of Thiele &
Knobloch (2004) indicates that the subcritical behaviour of the Benney equation
can become physically meaningful for very small or vanishing inclination angles only.
However, then Re � 1 and the Benney term ≈ ∂x(h

6∂xh) may be neglected, which
removes any singularity.

The results of numerical simulations performed by Joo et al. (1991) have been
recovered by our analysis. We can explain and predict the ‘dramatic behaviour’
observed in that work: it results from the blow-up character of the Benney equation
and is not associated with a secondary instability as conjectured by these authors.

The stability of stationary solutions has also been addressed for solutions that
are conditionally bounded depending on the wavenumber. They were all found to
be unstable to disturbances of higher periodicity. This gives the possibility for the
sub-harmonics to develop and as a consequence yields finite-time blow-up. This was
illustrated by numerical simulations that show blow-up promoted by wave coalescence.

At this stage, let us present a time-dependent simulation of the Benney equation
(4.1) obtained using a finite-difference implicit scheme. Figure 13 displays the nonlinear
response of a vertically falling and isothermal film subjected to a periodic forcing with
small noise at the inlet (left-hand side border). The reduced Reynolds number R = 0.9
has been chosen to lie below R∗

h, i.e. the blow-up of homoclines. It is of interest to
observe that at a given position, a singularity still appears in a finite time, leading
to the blow-up of the film thickness. The blow-up is preceeded by a succession of
coalescences between adjacent travelling waves. We think that the local coalescence
of humps in an extended system induces a local increase of the flow rate that locally
‘pushes’ the system beyond the blow-up boundary in the stability diagram of figure 7.
In conclusion, special care has to be taken since blow-up of travelling waves may
occur even slightly below the blow-up boundary presented here.
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Figure 13. Space–time plot showing the evolution of a solution of the BE (4.1) for R = 0.9 in
the vertical and isothermal case, i.e. C = M = 0. The film thickness is plotted at regular time
intervals. The flow is open and oriented from left to right. A periodic forcing with noise is
imposed at x = 0.

As one advantage, the Benney equation allows one to describe with a single
evolution equation the different physical effects in a falling film, namely in our case
viscosity, gravity, surface tension and thermocapillarity. We believe that this ensures
that the Benney equation, though only in its range of validity, will remain a useful
model to study thin film flows, especially to identify new phenomena. Indeed many
other effects may be added to the Benney equation like evaporation (Joo et al. 1991),
Van der Waals force (Tan, Bankoff & Davis 1966), chemical reaction (Trevelyan et al.
2002), topolographical effects (Kalliadasis, Bielarz & Homsy 2000), non-uniform
heating (Miladinova et al. 2002; Kabov et al. 2001; Scheid et al. 2002; Skotheim et al.
2002; Kalliadasis, Kiyashko & Demekhin 2003b), etc. The validity of the Benney
equation should in the future also be addressed including these additional effects.

Finally, the integral boundary layer model used in this work as the reference model
does not suffer from singular behaviour and is accurate for larger Reynolds number
than the Benney equation (Ruyer-Quil & Manneville 2000,,). Furthermore, the study
of stationary solutions with the WIBL model does not require much more effort than
the BE. So although for the ranges of validity defined in this paper the BE can be
used safely, the WIBL represents a promising alternative.
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Appendix A. Derivation of the weighted integral boundary layer (WIBL) model
The main assumption behind the boundary layer approximation is the smallness of

the film thickness modulations compared to the film thickness itself. We introduce a
formal parameter ε � 1 and apply a gradient expansion through the transformation
∂t → ε∂t and ∂x → ε∂x to the governing equations. Therefore, up to first-order in ε the
pressure gradient can easily be eliminated (Shkadov 1967) and the two-dimensional
dimensionless boundary layer equations, respectively the momentum, energy and
continuity equations, are

ε(∂tu + u ∂xu + v ∂yu) − ∂yyu − S + ε(
√

1 − S2 ∂xh − Ka ∂xxxh) = 0, (A 1)

ε(∂tT + u ∂xT + v ∂yT ) − 1

Pr
∂yyT = 0, (A 2)

∂xu + ∂yv = 0, (A 3)

where u is the streamwise velocity, v the cross-stream velocity, T the temperature and
Pr = ν/χ the Prandtl number with χ the thermal diffusivity. The boundary conditions
at the free surface y = h(x, t) are the kinematic condition, the balance of tangential
stress and Newton’s cooling law which are, at first-order in ε, respectively,

v = ∂th + u ∂xh, (A 4)

∂yu = −εMa ∂xT
(s), (A 5)

∂yT = −Bi T (s), (A 6)

where T (s) ≡ T (x, h(x, t), t) is the temperature at the free surface. At the wall y =0
the no-slip condition and constant temperature are imposed as

u = v = 0 , (A 7)

T = 1 . (A 8)

Now, the main goal of the integral boundary layer approach is the elimination of the
cross-stream coordinate y. Following Kapitza & Kapitza (1949) and Shkadov (1967),
the simplest idea would be to assume a parabolic velocity profile

u = 3
q

h

(
y

h
− 1

2

(
y

h

)2
)

, (A 9)

where q is the local flow rate. Shkadov suggested extending this assumption by
expanding the velocity field on the basis of self-similar profiles u =

∑
ai(x, t)fi(y/h).

This idea was re-investigated by Ruyer-Quil & Manneville (2000, 2002) using poly-
nomial test functions fi . They derived an averaged momentum equation at first order
and showed that increasing the number of polynomials or selecting different weight
functions eventually leads to the same averaged momentum equation. They proved
that the Galerkin method gives the results with minimal algebraic manipulations. It
consists of integrating the momentum equation (A 1) with the test function as the
weight function itself, namely y/h − (y/h)2/2, having substituted the velocity profiles
u and v given by (A 9) and (A 3). Moreover, integration of the continuity equation
(A 3) across the film, using (A 9) gives the mass balance of the film

∂th + ∂xq = 0. (A 10)

The study performed by Ruyer-Quil & Manneville can be extended without difficulty
to the set (A 1)–(A 8). Using (A 10) to identify ∂th = −∂xq , the momentum equation
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becomes

5

6
Sh − 5

2

q

h2
= ε

(
∂tq − 9

7

q2

h2
∂xh +

17

7

q

h
∂xq +

5

6

√
1 − S2h ∂xh

−5

6
Kah ∂xxxh − 5

4
Ma∂xT

(s)

)
, (A 11)

whose solution at leading order (ε → 0) is

q = S
h3

3
. (A 12)

The surface temperature T (s) already appears in a term at ε-order. It is therefore
enough to obtain its approximation at leading order. Solving ∂yyT = 0 together with
the boundary conditions (A 6) and (A 8) and taking y = h leads to the expression

T (s) =
1

1 + Bih
. (A 13)

We can now substitute (A 13) into (A 11) and write the first-order weighted integral
boundary layer model (WIBL) with Marangoni effect:

∂th = −∂xq, (A 14a)

∂tq =
5

6
Sh − 5

2

q

h2
+

9

7

q2

h2
∂xh − 17

7

q

h
∂xq − 5

6

√
1 − S2h ∂xh

+
5

6
Kah ∂xxxh +

5

4

Ma Bi ∂xh

(1 + Bih)2
, (A 14b)

where we have dropped the formal parameter ε.
Additionally, we can write q = q (0) + q (1), where the superscript denotes the order

in x-differentiation, assume ε2Ka= O(1) and perform a long-wave expansion of the
system (A 14). Substituting −∂xq

(0) by ∂th, we obtain

q (0) = S
h3

3
, (A 15)

q (1) =

(
2

15
S2h6 −

√
1 − S2

h3

3
+

h2

2

BiMa

(1 + Bi h)2

)
∂xh + Ka

h3

3
∂xxxh, (A 16)

whose substitution into the conservation equation (A 10) leads back to the BE (2.2).
This therefore shows that the WIBL model is intermediate between the boundary
layer model and the BE. Therefore the former should contain at least all the physics
of the latter.

Appendix B. Small Biot number: analogy with forced convection
Throughout this paper, we have imposed an arbitrary value for the Biot number

based on the assumption that the heat transfer coefficient at the liquid–gas interface
is small. Let us now justify this assumption by considering the classical problem of
forced convection along a heated plate (see e.g. Holman 1989). The boundary layer
theory in this case yields an expression for the Nusselt number

NuL =
αL

k
= 0.664Re1/2

L Pr1/3, (B 1)

which quantifies the heat transfer from the plate to the fluid layer; L is the length
of the heated plate and ReL = U∞L/ν where U∞ is the relative velocity between the
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plate and the fluid. We shall now make the following analogy: let the air be the
fluid and the liquid film (assumed to be flat for simplicity) be the ‘plate’ in our
forced convection problem, this ‘plate’ moving at the film surface velocity. The typical
characteristic temperature difference between the film surface and the air far from the
interface is about 10 K. A typical value of the film surface velocity is U∞ =10 cm s−1.
Setting for instance L =10 cm as the length of the heater, we are able to estimate
the heat transfer coefficient at the liquid–gas interface, provided that the ambient
air is at 22 ◦C and that the air properties are given at the average boundary layer
temperature (defined as the arithmetic mean between the ‘plate’ and the ambient air).
Then, νair = 15.69 × 10−6 m2 s−1, kair = 0.02624 Wm−1 K−1 and Pr= 0.708 at the air
temperature of 300 K. The heat transfer coefficient, using (B 1), is therefore

α = 3.92

(
U∞

L

)1/2

≈ 4 W m−2 K−1, (B 2)

As expected, the basic value of the heat transfer coefficient at the liquid–gas interface is
very small. Nevertheless our approximation underestimates the effective heat transfer
at the liquid–gas interface while it is generally improved by including wave motion
and residual evaporation. These effects may increase by one or several orders of
magnitude the heat transfer coefficient. For this reason, we arbitrarily overestimated
α and used a value 100 W m−2 K−1 to calculate the Biot numbers for usual liquids
given in table 1.
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